Enhancing thermal stability and mechanical properties of lyotropic liquid crystals through incorporation of a polymerizable surfactant.
نویسندگان
چکیده
We present a facile method to prepare thermally stable and mechanically robust crosslinked lyotropic liquid crystals (LLCs) through incorporation of a polymerizable amphiphile into a binary LLC system comprising commercially available surfactant Brij 97 and water. Thermal stability and mechanical properties of the polymerized LLCs were significantly enhanced after polymerization of the incorporated polymerizable surfactant. The effect of incorporating a polymerizable amphiphile on the phase behavior of the LLC system was studied in detail. In situ photo-rheology was used to monitor the change in the mechanical properties of the LLCs, namely the storage modulus, loss modulus, and viscosity, upon polymerization. The retention of the LLC nanostructures was evaluated by small angle X-ray scattering (SAXS). The ability to control the thermal stability and mechanical strength of LLCs simply by adding a polymerizable amphiphile, without tedious organic synthesis or harsh polymerization conditions, could prove highly advantageous in the preparation of robust nanomaterials with well-defined periodic structures.
منابع مشابه
Characterization of the phase behaviour of a novel polymerizable lyotropic ionic liquid crystal.
The development of new polymerizable lyotropic liquid crystals (LLCs) utilizing charged amphiphilic molecules such as those based on long chain imidazolium compounds, is a relatively new design direction for producing robust membranes with controllable nano-structures. Here we have developed a novel polymerizable ionic liquid based LLC, 1-hexadecyl-3-methylimidazolium acrylate (C16mimAcr), wher...
متن کاملLecithin Based Pseudoternary Phase Diagrams
Aim: Different promising colloidal delivery systems including microemulsions and liquid crystals could be obtained with suitable combination of oil, surfactants/cosurfactants and water. However, the main problem from a formulation point of view has been to choose the surfactants capable of forming such systems and be physiologically acceptable in the same time. To overcome the later shortcoming...
متن کاملPassing Current through Electrically Conducting Lyotropic Liquid Crystals and Micelles Assembled from Hybrid Surfactants with π-Conjugated Tail and Polyoxometalate Head
The solvent-mediated ability for molecularly encoded self-assembly into states of higher order (micelles, lyotropic liquid crystals) embodies the basis for many applications of surfactants in science and society. Surfactants are used frequently in recipes for nanoparticle synthesis. Because ordinary surfactants comprise insulating constituents (alkyl groups as side-chains and charged organic he...
متن کاملLyotropic liquid crystalline phase behaviour in amphiphile-protic ionic liquid systems.
Approximate partial phase diagrams for nine amphiphile-protic ionic liquid (PIL) systems have been determined by synchrotron source small angle X-ray scattering, differential scanning calorimetry and cross polarised optical microscopy. The binary phase diagrams of some common cationic (hexadecyltrimethyl ammonium chloride, CTAC, and hexadecylpyridinium bromide, HDPB) and nonionic (polyoxyethyle...
متن کاملEffect of Ni on Amorphization of Ti-Cu-Ni Ternary alloys Prepared by Mechanical alloying
Amorphous alloys has been taken into consideration because of their unique properties and are nominated as the future engineering materials. In this research, the effect of Ni and milling time on amorphization process and thermal stability of Ti50Cu50-xNix(x=10, 15, 25 at%) alloy system were investigated. The evolution of amorphization during milling, thermal stability and subsequent heat treat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 11 31 شماره
صفحات -
تاریخ انتشار 2015